Friday, August 20, 2010

ELECTRIC MOTOR

File:Motors01CJC.jpg

An electric motor uses electrical energy to produce mechanical energy, very typically through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by an alternator, generator or dynamo. Many types of electric motors can be run as generators, and vice avers. For example a starter/generator for a gas turbine or Traction motors used on vehicles often perform both tasks.

Electric motors are found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (e.g., a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the millions of watts. Electric motors may be classified by the source of electric power, by their internal construction, by their application, or by the type of motion they give.
The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
Some devices, such as magnetic solenoids and loudspeakers, although they generate some mechanical power, are not generally referred to as electric motors, and are usually termed actuators and transducers,respectively.

INDUCTION MOTOR


An induction motor or asynchronous motor is a type of alternating current motor where power is supplied to the rotor by means of electromagnetic induction.
An electric motor turns because of magnetic force exerted between a stationary electromagnet called the stator and a rotating electromagnet called the rotor. Different types of electric motors are distinguished by how electric current is supplied to the moving rotor. In a DC motor and a slip-ring AC motor, current is provided to the rotor directly through sliding electrical contacts called commutators and slip rings. In an induction motor, by contrast, the current is induced in the rotor without contacts by the magnetic field of the stator, through electromagnetic induction. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Unlike the normal transformer which changes the current by using time varying flux, induction motors use rotating magnetic fields to transform the voltage. The current in the primary side creates an electromagnetic field which interacts with the electromagnetic field of the secondary side to produce a resultant torque, thereby transforming the electrical energy into mechanical energy. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.
Induction motors are now the preferred choice for industrial motors due to their rugged construction, absence of brushes (which are required in most DC motors) and—thanks to modern power electronics—the ability to control the speed of the motor
Three-phase induction motors
An induction motor or asynchronous motor is a type of alternating current motor where power is supplied to the rotor by means of electromagnetic induction.
An electric motor turns because of magnetic force exerted between a stationary electromagnet called the stator and a rotating electromagnet called the rotor. Different types of electric motors are distinguished by how electric current is supplied to the moving rotor. In a DC motor and a slip-ring AC motor, current is provided to the rotor directly through sliding electrical contacts called commutators and slip rings. In an induction motor, by contrast, the current is induced in the rotor without contacts by the magnetic field of the stator, through electromagnetic induction. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Unlike the normal transformer which changes the current by using time varying flux, induction motors use rotating magnetic fields to transform the voltage. The current in the primary side creates an electromagnetic field which interacts with the electromagnetic field of the secondary side to produce a resultant torque, thereby transforming the electrical energy into mechanical energy. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.
Induction motors are now the preferred choice for industrial motors due to their rugged construction, absence of brushes (which are required in most DC motors) and—thanks to modern power electronics—the ability to control the speed of the motor.

 
A 3-phase power supply provides a rotating magnetic field in an induction motor.
The basic difference between an induction motor and a synchronous AC motor is that in the latter a current is supplied into the rotor (usually DC) which in turn creates a (circular uniform) magnetic field around the rotor. The rotating magnetic field of the stator will impose an electromagnetic torque on the still magnetic field of the rotor causing it to move (about a shaft) and rotation of the rotor is produced. It is called synchronous because at steady state the speed of the rotor is the same as the speed of the rotating magnetic field in the stator. By way of contrast, the induction motor does not have any direct supply onto the rotor; instead, a secondary current is induced in the rotor. To achieve this, stator windings are arranged around the rotor so that when energised with a polyphase supply they create a rotating magnetic field pattern which sweeps past the rotor. This changing magnetic field pattern induces current in the rotor conductors. These currents interact with the rotating magnetic field created by the stator and in effect causes a rotational motion on the rotor. However, for these currents to be induced, the speed of the physical rotor must be less than the speed of the rotating magnetic field in the stator or else the magnetic field will not be moving relative to the rotor conductors and no currents will be induced. If by some chance this happens, the rotor typically slows slightly until a current is re-induced and then the rotor continues as before. This difference between the speed of the rotor and speed of the rotating magnetic field in the stator is called slip. It is unitless and is the ratio between the relative speed of the magnetic field as seen by the rotor (the slip speed) to the speed of the rotating stator field. Due to this, an
induction motor is sometimes referred to as an asynchronous machine.

STEPPER MOTOR


Frame 1: The top electromagnet (1) is turned on, attracting the nearest tooth of a gear-shaped iron rotor. With the teeth aligned to electromagnet 1, they will be slightly offset from electromagnet 2. Frame 2: The top electromagnet (1) is turned off, and the right electromagnet (2) is energized, pulling the nearest teeth slightly to the right. This results in a rotation of 3.6° in this example. Frame 3: The bottom electromagnet (3) is energized; another 3.6° rotation occurs. Frame 4: The left electromagnet (4) is enabled, rotating again by 3.6°. When the top electromagnet (1) is again enabled, the teeth in the sprocket will have rotated by one tooth position; since there are 25 teeth, it will take 100 steps to make a full rotation in this example.

A stepper motor (or step motor) is a brushless, synchronous electric motor that can divide a full rotation into a large number of steps. The motor's position can be controlled precisely without any feedback mechanism (see Open-loop controller), as long as the motor is carefully sized to the application. Stepper motors are similar to switched reluctance motors (which are very large stepping motors with a reduced pole count, and generally are closed-loop commutated.)
Stepper motors operate differently from DC brush motors, which rotate when voltage is applied to their terminals. Stepper motors, on the other hand, effectively have multiple "toothed" electromagnets arranged around a central gear-shaped piece of iron. The electromagnets are energized by an external control circuit, such as a microcontroller. To make the motor shaft turn, first one electromagnet is given power, which makes the gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth are thus aligned to the first electromagnet, they are slightly offset from the next electromagnet. So when the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next one, and from there the process is repeated. Each of those slight rotations is called a "step," with an integer number of steps making a full rotation. In that way, the motor can be turned by a precise angl

LINEAR MOTOR

                       

A linear motor or linear induction motor is an alternating current (AC) electric motor that has had its stator "unrolled" so that instead of producing a torque (rotation) it produces a linear force along its length. The most common mode of operation is as a Lorentz-type actuator, in which the applied force is linearly proportional to the current and the magnetic field (F = qv × B).
Many designs have been put forward for linear motors, falling into two major categories, low-acceleration and high-acceleration linear motors. Low-acceleration linear motors are suitable for maglev trains and other ground-based transportation applications. High-acceleration linear motors are normally quite short, and are designed to accelerate an object up to a very high speed and then release it, like roller coasters. They are usually used for studies of hypervelocity collisions, as weapons, or as mass drivers for spacecraft propulsion. The high-acceleration motors are usually of the linear induction design (LIM) with an active three-phase winding on one side of the air-gap and a passive conductor plate on the other side. The low-acceleration, high speed and high power motors are usually of the linear synchronous design (LSM), with an active winding on one side of the air-gap and an array of alternate-pole magnets on the other side. These magnets can be permanent magnets or energized magnets. The Transrapid Shanghai motor is an LSM.

LYNCH MOTOR

                 


The Lynch motor is a unique axial gap permanent magnet brushed DC motor invented by Cedric Lynch. United States patent 4823039 amongst others cover the motor and its construction. The motor was developed in to a production item by Cedric Lynch and Trevor Lees in the early 1990s.
In this motor the iron laminations are rectangular, which made it possible to have them commercially made from material intended for this purpose without the expense of a special stamping tool. Because the flux passes through the laminations along one axis only, it became possible to take advantage of grain-oriented material normally used in large transformers. This has much better magnetic properties along the grain orientation but worse properties in other directions, so in the traditional type of motor it gives little or no benefit.
This motor went into small-scale production in 1988 with the firm London Innovation and later with the Lynch Electric Motor Company (LEMCO) . In 1989 four of them powered the boat "An Stradag", driven by the Countess of Arran, to a world record speed for an electric boat of just over 80 km/h (50 mph). The motor was adopted by the Swiss company ASMO for use in its electric go-kart drive systems. Its efficiency extends the life of the batteries and so improves the economics of running an electric karting track.
The patents and license rights for the manufacturing of the Lynch motor are held by the Lynch IP company, which has sold a license to Briggs and Stratton to manufacture the ETEK motor.
LEMCO continued to manufacture motors and now trades under the name of LMC (Lynch Motor Company) "LMC Website" which now owns the Lynch IP company and therefore all rights and patents pertaining to the motor.
In 2009, Cedric Lynch appears to have parted company with LMC and is working for Agni Motors Agni Motors Website which is producing similar motors.

NANO MOTOR


A nanomotor is a molecular device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.
A proposed branch of research is the integration of molecular motor proteins found in living cells into molecular motors implanted in artificial devices. Such a motor protein would be able to move a "cargo" within that device, via protein dynamics, similarly to how kinesin moves various molecules along tracks of microtubules inside cells.
Starting and stopping the movement of such motor proteins would involve caging the ATP in molecular structures sensitive to UV light. Pulses of UV illumination would thus provide pulses of movement. Nanomotors have also been made using synthetic materials and chemical methods.


The first Nanotube nanomotor has been developed in 2003 by the group of Alex Zettl at UC Berkeley
Researchers led by Joseph Wang have made a breakthrough development in 2008 by making a new generation of fuel-driven catalytic nanomotors that are up to 10 times more powerful than existing nanomachines . It is a major step forward to a practical energy source for powering tomorrow's nanomachines.

TRACTION MOTOR

Traction motor refers to an electric motor providing the primary rotational torque of a machine, usually for conversion into linear motion (traction).
Traction motors are used in electrically powered rail vehicles such as electric multiple units and electric locomotives, other electric vehicles such as electric milk floats, elevators and conveyors as well as vehicles with electrical transmission systems such as diesel-electric, electric hybrid vehicles and battery electric vehicles. Additionally, electric motors in other products (such as the main motor in a washing machine) are described as traction motors
   
Traditionally, these were DC series-wound motors, usually running on approximately 600 volts. The availability of high-powered semiconductors (such as thyristors and the IGBT) has now made practical the use of much simpler, higher-reliability AC induction motors known as asynchronous traction motors. Synchronous AC motors are also occasionally used, as in the French TGV. Before the mid-20th century, a single large motor was often used to drive multiple driving wheels through connecting rods that were very similar to those used on steam locomotives. Examples are the Pennsylvania Railroad DD1, the PRR L5 and the various Swiss Crocodiles. It is now standard practice to provide one traction motor driving each axle through a gear drive. Usually, the traction motor is three-point suspended between the bogie frame and the driven axle; this is referred to as a "nose-suspended traction motor". The problem with such an arrangement is that a portion of the motor's weight is unsprung, increasing forces on the track. In the case of the famous Pennsylvania Railroad GG1, two bogie-mounted motors drove each axle through a quill drive. The "Bi-Polar" electric locomotives built by General Electric for the Milwaukee Road had direct drive motors. The rotating shaft of the motor was also the axle for the wheels. In the case of French TGV power units, a motor mounted to the power unit’s frame drives each axle; a "tripod" drive allows a small amount of flexibility in the drive train allowing the trucks (bogies) to pivot. By mounting the relatively heavy traction motor directly to the power unit rather than to the bogie, better dynamics are obtained allowing better high-speed operation. The DC motor was the mainstay of electric traction drives on both electric and diesel-electric locomotives and street-cars/trams for many years. It consists of two parts, a rotating armature and fixed field windings surrounding the rotating armature mounted around a shaft. The fixed field windings consist of tightly wound coils of wire fitted inside the motor case. The armature is another set of coils wound round a central shaft and is connected to the field windings through "brushes" which are spring loaded contacts pressing against an extension of the armature called the commutator. The commutator collects all the terminations of the armature coils and distributes them in a circular pattern to allow the correct sequence of current flow. When the armature and the field windings are connected in series, the whole motor is referred to as "series-wound". A series-wound DC motor has a low resistance field and armature circuit. Because of this, when voltage is applied to it, the current is high. (Ohms Law: current = voltage/resistance). The advantage of high current is that the magnetic fields inside the motor are strong, producing high torque (turning force), so it is ideal for starting a train. The disadvantage is that the current flowing into the motor has to be limited, otherwise the supply could be overloaded and/or the motor and its cabling could be damaged. At best, the torque would exceed the adhesion and the driving wheels would slip. Traditionally, resistors were used to limit the initial current. As the DC motor starts to turn, the interaction of the magnetic fields inside causes it to generate a voltage internally. This "back-EMF" (electromagnetic force) opposes the applied voltage and the current that flows is governed by the difference between the two. As the motor speeds up, the internally generated voltage rises, the resultant EMF falls, less current passes through the motor and the torque drops. The motor naturally stops accelerating when the drag of the train matches the torque produced by the motors. To continue accelerating the train, series resistors are switched out steps by step, each step increasing the effective voltage and thus the current and torque for a little bit longer until the motor catches up. This can be heard and felt in older DC trains as a series of clunks under the floor, each accompanied by a jerk of acceleration as the torque suddenly increases in response to the new surge of current. When no resistors are left in the circuit, full line voltage is applied directly to the motor. The train's speed remains constant at the point where the torque of the motor, governed by the effective voltage, equals the drag - sometimes referred to as balancing speed. If the train starts to climb an incline, the speed reduces because drag is greater than torque and the reduction in speed causes the back-EMF to fall and thus the effective voltage to rise - until the current through the motor produces enough torque to match the new drag. On an electric train, the train driver originally had to control the cutting out of resistance manually, but by 1914, automatic acceleration was being used. This was achieved by an accelerating relay (often called a "notching relay") in the motor circuit which monitored the fall of current as each step of resistance was cut out. All the driver had to do was select low, medium or full speed (called "shunt", "series" and "parallel" from the way the motors were connected in the resistance circuit) and the automatic equipment would do the rest.